Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from collections import defaultdict
from itertools import product
import networkx as nx
from community import best_partition as louvain_partition
class EpochCommunity:
def __init__(self, epoch=1, **kwargs):
if epoch < 1:
raise ValueError('epoch < 1')
self.epoch = epoch
self.graph = nx.Graph()
self.old_graph = None
self.community = defaultdict(frozenset)
self._cbc_memo = {}
def set_link(self, a, b, state, now):
if a not in self.graph:
self.graph.add_node(a)
if b not in self.graph:
self.graph.add_node(b)
if b not in self.graph[a]:
self.graph.add_edge(a, b, { 'start': -1 })
edge = self.graph[a][b]
if state:
edge['start'] = now
if 'duration' not in edge:
edge['duration'] = 0
else:
edge['duration'] = now - edge['start']
edge['start'] = -1
def next_epoch(self, now):
self.community = defaultdict(frozenset)
edges_to_keep = []
self._cbc_memo = {}
for a, b, start in self.graph.edges(data='start'):
if start > -1:
self.set_link(a, b, False, now)
edges_to_keep.append((a, b))
self.old_graph = self.graph
self.graph = nx.Graph()
for a, b in edges_to_keep:
self.set_link(a, b, True, now)
return self.old_graph
def tick(self, env, network):
raise NotImplementedError
yield env.timeout(0)
def process(self, env, network):
return env.process(self.tick(env, network))
def __getitem__(self, node):
return self.community[node]
def get_lp(self, node):
'''local popularity of a node'''
if node not in self.old_graph:
return 0
edges = self.old_graph[node]
community = self[node]
return sum([
edge['duration']
for other, edge in edges.items()
if other in community
])
def get_gp(self, node):
'''global popularity of a node'''
if node not in self.old_graph:
return 0
edges = self.old_graph[node]
community = self[node]
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
return sum([
edge['duration']
for other, edge in edges.items()
if other not in community
])
def get_ui(self, node):
'''unique interactions with a node'''
if node not in self.old_graph:
return 0
edges = self.old_graph[node]
community = self[node]
return len([
other
for other in edges
if other in community
])
def get_cbc(self, a, b):
g = self.old_graph
c_x = self[a]
c_y = self[b]
memo = (c_x, c_y)
if a not in g or b not in g or c_x == c_y:
return 0
if memo in self._cbc_memo:
return self._cbc_memo[memo]
cbc = sum([
g[x][y]['duration']
for x, y in product(c_x, c_y)
if y in g[x]
])
'''
for x in c_x:
for y in c_y:
if x in g[y]:
cbc += g[x][y]['duration']
'''
self._cbc_memo[memo] = cbc
self._cbc_memo[(memo[1], memo[0])] = cbc
return cbc
def get_ncf(self, x, b):
g = self.old_graph
c_y = self[b]
if x not in g or b not in g:
return 0
return sum([
g[x][y]['duration']
for y in c_y
if y in g[x]
])
class KCliqueCommunity(EpochCommunity):
def __init__(self, k=3, threshold=300, epoch=604800, **kwargs):
super().__init__(epoch=epoch, **kwargs)
self.k = k
self.threshold = threshold
def tick(self, env, network):
while True:
yield env.timeout(self.epoch)
g = self.next_epoch(env.now)
G = nx.Graph()
G.add_nodes_from(g.nodes())
for a, b, duration in g.edges(data='duration'):
if duration > self.threshold:
G.add_edge(a, b)
for community in nx.k_clique_communities(G, self.k):
for node in community:
self.community[node] = community
class LouvainCommunity(EpochCommunity):
def __init__(self, epoch=604800, **kwargs):
super().__init__(epoch=epoch, **kwargs)
def tick(self, env, network):
while True:
yield env.timeout(self.epoch)
g = self.next_epoch(env.now)
# I made a change in community package to get this to work
# change graph.copy() to nx.Graph(graph) in community_louvain.py
p = louvain_partition(g, weight='duration')
communities = defaultdict(set)
for node, c in louvain_partition(g, weight='duration').items():
communities[c].add(node)
for community in communities.values():
community = frozenset(community)
for node in community:
self.community[node] = community
def none(**kwargs):
return None
types = {
'kclique': KCliqueCommunity,
'louvain': LouvainCommunity,
'none': none,
}