diff --git a/build/compile_summa.sh b/build/compile_summa.sh
index 176d05b41eebd1c7ca840ed74b1a3b0c130ff049..77ce42b45a077b06c4677b353dd9cec44bedffab 100644
--- a/build/compile_summa.sh
+++ b/build/compile_summa.sh
@@ -7,7 +7,7 @@ module load openblas
 module load caf
 
 #### Specifiy Master Directory, parent of build directory
-export F_MASTER=/globalhome/kck540/HPC/SummaProjects/Summa-Actors
+export F_MASTER=/home/kklenk/SummaProjects/Summa-Actors
 
 #### Specifiy Compilers ####
 export FC=gfortran
diff --git a/utils/StatisticsScripts/UsageStatsCSV.py b/utils/StatisticsScripts/UsageStatsCSV.py
new file mode 100644
index 0000000000000000000000000000000000000000..bd90464ef2be5e7e1835578057ef6280e021bb7f
--- /dev/null
+++ b/utils/StatisticsScripts/UsageStatsCSV.py
@@ -0,0 +1,159 @@
+import numpy as np
+import pandas as pd
+import statistics as stat
+import csv
+import matplotlib as mpl
+import matplotlib.pyplot as plt
+
+def time_convert(x):
+    h,m,s = map(int,x.split(':'))
+    return (h*60+m)*60+s
+
+
+def ramUsage():
+    data_set_1_actors = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/Jul-08-2022/SummaActors_jobStats_63007640_Filled_failed.csv")
+    # data_set_2_actors = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/Jun-17-2022/SummaActors_jobStats_62270590.csv")
+    # data_set_3_actors = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/May-26-2022/SummaActors_jobStats_61263427.csv")
+
+    data_set_1_original = pd.read_csv("/home/kklenk/SummaProjects/Summa-Actors/utils/StatisticsScripts/SummaOriginal_jobStats_63155456.csv")
+    # data_set_2_original = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaOriginalOuput/May-27-2022/SummaOriginal_jobStats_61377500.csv")
+    # data_set_3_original = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaOriginalOuput/May-30-2022/SummaOriginal_jobStats_61415123.csv")
+
+
+    df1_actors = pd.DataFrame(data_set_1_actors)
+    # df2_actors = pd.DataFrame(data_set_2_actors)
+    # df3_actors = pd.DataFrame(data_set_3_actors)
+
+
+    df1_original = pd.DataFrame(data_set_1_original)
+    # df2_original = pd.DataFrame(data_set_2_original)
+    # df3_original = pd.DataFrame(data_set_3_original)
+
+
+    actors_stat1 = []
+    for x in df1_actors["Wall-Clock Time"].values:
+        actors_stat1.append(round((time_convert(x) / 60) / 60, 2))
+    # actors_stat2 = []
+    # for x in df2_actors["Wall-Clock Time"].values:
+    #     actors_stat2.append(round((time_convert(x) / 60) / 60, 2))
+    # actors_stat3 = []
+    # for x in df3_actors["Wall-Clock Time"].values:
+    #     actors_stat3.append(round((time_convert(x) / 60) / 60, 2))
+
+    print("SUMMA-Actors Array Job 1 Total Wall-Clock =", sum(actors_stat1))
+    # print("SUMMA-Actors Array Job 2 Total Wall-Clock =", sum(actors_stat2))
+    # print("SUMMA-Actors Array Job 3 Total Wall-Clock =", sum(actors_stat3))
+
+    original_stat1 = []
+    for x in df1_original["Wall-Clock Time"].values:
+        original_stat1.append(round((time_convert(x) / 60) / 60, 2))
+    # original_stat2 = []
+    # for x in df2_original["Wall-Clock Time"].values:
+    #     original_stat2.append(round((time_convert(x) / 60) / 60, 2))
+    # original_stat3 = []
+    # for x in df3_original["Wall-Clock Time"].values:
+    #     original_stat3.append(round((time_convert(x) / 60) / 60, 2))
+    print()
+    print("SUMMA-Original Array Job 1 Total Wall-Clock =", sum(original_stat1))
+    # print("SUMMA-Original Array Job 2 Total Wall-Clock =", sum(original_stat2))
+    # print("SUMMA-Original Array Job 3 Total Wall-Clock =", sum(original_stat3))
+
+
+
+    # usageStat4 = []
+    # for x in df4["Wall-Clock Time"].values:
+    #     usageStat4.append(round((time_convert(x) / 60) / 60, 2))
+
+    # print("Total Time Actor = ", sum(usageStat1))
+    # print("Max Actor = ", max(usageStat1))
+    # print("Min Actor = ", min(usageStat1))
+    # print("----------------------------------------")
+    # print("Total Time Original = ", sum(usageStat2))
+    # print("Max Original = ", max(usageStat2))
+    # print("Min Original = ", min(usageStat2))
+
+    # # totalRam = [sum(usageStat1), sum(usageStat2), sum(usageStat4)]
+    # print("usageStat1 Total Ram Used = ", sum(usageStat1))
+    # # print("usageStat1 Mean Ram Used = ", stat.mean(usageStat1))
+    # print("usageStat2 Total Ram Used = ", sum(usageStat2))
+    # print("usageStat2 Mean Ram Used = ", stat.mean(usageStat2))
+    # print("usageStat4 Total Ram Used = ", sum(usageStat4))
+    # print("usageStat4 Mean Ram Used = ", stat.mean(usageStat4))
+    # print()
+    # print("variation = ", stat.stdev(totalRam) / stat.mean(totalRam))
+    # csvFile = open("VarationStats.csv", 'w')
+    # header = ["relative standard deviation"]
+
+    # csvFile.write("{}\n".format("relative standard deviation"))
+
+    # for i in range(0, len(usageStat1)):
+    #     l = [usageStat1[i], usageStat2[i], usageStat4[i]]
+    #     csvFile.write("{}\n".format(stat.stdev(l) / stat.mean(l)))
+
+
+def scatterPlot():
+    data_set_1 = pd.read_csv("/home/kklenk/SummaProjects/Summa-Actors/utils/StatisticsScripts/VarationStats.csv")
+
+    df = pd.DataFrame(data_set_1)
+
+    d = df["relative standard deviation"].values
+    x = []
+    for i in range(1, 515):
+        x.append(i)
+    print(len(x))
+    print(len(d))
+    plt.scatter(x, d)
+    plt.title("Coefficient of Variation Plot")
+    plt.xlabel("Job number")
+    plt.ylabel("Relative Standard Deviation")
+    plt.savefig("RSD-Actors.pdf", format="pdf", bbox_inches="tight")
+    plt.show()
+    
+
+
+def initDuration():
+    data_set_1 = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/Jun-06-2022/csv/Success1.csv")
+    df = pd.DataFrame(data_set_1)
+    print(sum(df["initDuration"].values))
+
+def findRow(df, startHRU):
+    bool_val = False
+    for row in df.iterrows():
+        if row[1].iloc[0] == startHRU:
+            bool_val = True
+            break
+    
+    if (bool_val):
+        print("found", startHRU)
+    else:
+        print("did not find", startHRU)
+    
+
+
+
+
+
+
+def compareCompleted():
+    data_actor = pd.read_csv("/home/kklenk/SummaProjects/Summa-Actors/utils/StatisticsScripts/SummaActors_jobStats_62666948.csv", index_col=False)
+    data_original = pd.read_csv("/home/kklenk/SummaProjects/Summa-Actors/utils/StatisticsScripts/SummaOriginal_jobStats_62667162.csv", index_col=False)
+    df_actors = pd.DataFrame(data_actor)
+    df_original = pd.DataFrame(data_original)
+
+    df_actors = df_actors.drop(df_actors[df_actors.Status == "TIMEOUT"].index)
+    # df_actors = df_actors.drop(columns=["Status","#-CPU","CPU Efficiency","Memory Used"])
+    
+    df_original = df_original.drop(df_original[df_original.Status == "TIMEOUT"].index)
+    # df_original = df_original.drop(columns=["Status","#-CPU","CPU Efficiency","Memory Used"])
+    
+    
+    for row in df_original.iterrows():
+        # print(row[1].iloc[0])
+        findRow(df_actors, row[1].iloc[0])
+
+    
+    # df_actors.to_csv("actors_no_timeout.csv", index=False)
+    # df_original.to_csv("original_no_timeout.csv", index=False)
+ramUsage()
+# compareCompleted()
+# initDuration()
diff --git a/utils/StatisticsScripts/ramUsage.py b/utils/StatisticsScripts/ramUsage.py
deleted file mode 100644
index bb03fa1d08ef0b98daf98cdeab34338d7982bd7d..0000000000000000000000000000000000000000
--- a/utils/StatisticsScripts/ramUsage.py
+++ /dev/null
@@ -1,76 +0,0 @@
-import numpy as np
-import pandas as pd
-import statistics as stat
-import csv
-import matplotlib as mpl
-import matplotlib.pyplot as plt
-
-def time_convert(x):
-    h,m,s = map(int,x.split(':'))
-    return (h*60+m)*60+s
-
-
-def ramUsage():
-    data_set_1 = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/Jun-06-2022/SummaActors_jobStats_61721504.csv")
-    data_set_2 = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/May-13-2022/SummaActors_jobStatistics_60829543.csv")
-    data_set_4 = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/May-26-2022/SummaActors_jobStats_61263427.csv")
-
-    # data_set_1 = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaOriginalOuput/Apr-28-2022/SummaOrginal-60232429_jobStatistics.csv")
-    # data_set_2 = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaOriginalOuput/May-27-2022/SummaOriginal_jobStats_61377500.csv")
-    # data_set_4 = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaOriginalOuput/May-30-2022/SummaOriginal_jobStats_61415123.csv")
-
-
-    df1 = pd.DataFrame(data_set_1)
-    df2 = pd.DataFrame(data_set_2)
-    df4 = pd.DataFrame(data_set_4)
-
-    usageStat1 = []
-    for x in df1["Wall-Clock Time"].values:
-        usageStat1.append(round((time_convert(x) / 60) / 60, 2))
-    usageStat2 = []
-    for x in df2["Wall-Clock Time"].values:
-        usageStat2.append(round((time_convert(x) / 60) / 60, 2))
-    usageStat4 = []
-    for x in df4["Wall-Clock Time"].values:
-        usageStat4.append(round((time_convert(x) / 60) / 60, 2))
-
-    totalRam = [sum(usageStat1), sum(usageStat2), sum(usageStat4)]
-    print("usageStat1 Total Ram Used = ", sum(usageStat1))
-    print("usageStat1 Mean Ram Used = ", stat.mean(usageStat1))
-    print("usageStat2 Total Ram Used = ", sum(usageStat2))
-    print("usageStat2 Mean Ram Used = ", stat.mean(usageStat2))
-    print("usageStat4 Total Ram Used = ", sum(usageStat4))
-    print("usageStat4 Mean Ram Used = ", stat.mean(usageStat4))
-    print()
-    print("variation = ", stat.stdev(totalRam) / stat.mean(totalRam))
-    csvFile = open("VarationStats.csv", 'w')
-    header = ["relative standard deviation"]
-
-    csvFile.write("{}\n".format("relative standard deviation"))
-
-    for i in range(0, len(usageStat1)):
-        l = [usageStat1[i], usageStat2[i], usageStat4[i]]
-        csvFile.write("{}\n".format(stat.stdev(l) / stat.mean(l)))
-
-
-def scatterPlot():
-    data_set_1 = pd.read_csv("/home/kklenk/SummaProjects/Summa-Actors/utils/StatisticsScripts/VarationStats.csv")
-
-    df = pd.DataFrame(data_set_1)
-
-    d = df["relative standard deviation"].values
-    x = []
-    for i in range(1, 515):
-        x.append(i)
-    print(len(x))
-    print(len(d))
-    plt.scatter(x, d)
-    plt.title("Coefficient of Variation Plot")
-    plt.xlabel("Job number")
-    plt.ylabel("Relative Standard Deviation")
-    plt.savefig("RSD-Actors.pdf", format="pdf", bbox_inches="tight")
-    plt.show()
-
-    
-# ramUsage()
-scatterPlot()
\ No newline at end of file
diff --git a/utils/StatisticsScripts/resourageUsage.py b/utils/StatisticsScripts/resourageUsage.py
index 5a824bee53e662f1fe0ed9e51a4616499c7f5175..49e9e8ef8a88a98606799dbe2750ed3cd30fd71b 100644
--- a/utils/StatisticsScripts/resourageUsage.py
+++ b/utils/StatisticsScripts/resourageUsage.py
@@ -13,8 +13,9 @@ This function uses the seff command and can get the following data:
  - CPU-Efficiency
  - Wall-Clock Time
  - Memory Used
+ - Completion Status
 '''
-def seffCommand(jobId, numJobs):
+def seffCommand(jobId, numJobs, gru_per_job):
     input_prompt = "SummaActors: a\nSummaOriginal: o\n"
     # Get input from the user
     user_response = input(input_prompt)
@@ -27,14 +28,14 @@ def seffCommand(jobId, numJobs):
         raise Exception("Something went wrong")
 
     csvFile = open(output_csv_name, 'w')
-    header = ["startHRU", "numHRU", "#-CPU", "CPU Efficiency", "Wall-Clock Time", "Memory Used"]
+    header = ["startHRU", "numHRU", "#-CPU", "CPU Efficiency", "Wall-Clock Time", "Memory Used", "Status"]
 
     writer = csv.writer(csvFile)
 
     writer.writerow(header)
 
-    numHRU = 1000
-    for i in range(0, int(numJobs)):
+    numHRU = gru_per_job
+    for i in range(0, numJobs):
         print("Job", i)
         rowData = []
         rowData = [numHRU * i + 1, numHRU]
@@ -48,6 +49,7 @@ def seffCommand(jobId, numJobs):
             if b'CPU Efficiency:' in line:
                 effeciency = line.decode().split(" ")[2]
                 effeciency = effeciency.strip()
+                effeciency = effeciency.replace('%', '')
 
             if b'Job Wall-clock time:' in line:
                 wallClock = line.decode().split(" ")[-1]
@@ -56,11 +58,16 @@ def seffCommand(jobId, numJobs):
             if b'Memory Utilized:' in line:
                 memory = line.decode().split(" ")[2]
                 memory = memory.strip()
+            
+            if b'State:' in line:
+                status = line.decode().split(" ")[1]
+                status = status.strip()
         
         rowData.append(cores)
         rowData.append(effeciency)
         rowData.append(wallClock)
         rowData.append(memory)
+        rowData.append(status)
         writer.writerow(rowData)
 
     csvFile.close()
@@ -71,6 +78,9 @@ print(jobId)
 numJobs = argv[2]
 print(numJobs)
 
-seffCommand(jobId, numJobs)
+gru_per_job = argv[3]
+print(gru_per_job)
+
+seffCommand(jobId, int(numJobs), int(gru_per_job))
 
 
diff --git a/utils/StatisticsScripts/stats.py b/utils/StatisticsScripts/stats.py
new file mode 100644
index 0000000000000000000000000000000000000000..1c64b27995ab751ce5f996886255c846cc90ffb6
--- /dev/null
+++ b/utils/StatisticsScripts/stats.py
@@ -0,0 +1,45 @@
+import numpy as np
+import pandas as pd
+import statistics as stat
+import csv
+import matplotlib as mpl
+import matplotlib.pyplot as plt
+
+def time_convert(x):
+    h,m,s = map(int,x.split(':'))
+    return (h*60+m)*60+s
+
+def wallClockTime(data_set_1, data_set_2):
+    df1 = pd.DataFrame(data_set_1)
+    df2 = pd.DataFrame(data_set_2)
+
+    df1_stat = []
+    for time in df1["Wall-Clock Time"].values:
+        df1_stat.append(round((time_convert(time) / 60) / 60, 2))
+    print("Total Wall Clock for data_set_1 =", sum(df1_stat))
+    df2_stat = []
+    for time in df2["Wall-Clock Time"].values:
+        df2_stat.append(round((time_convert(time) / 60) / 60, 2))
+    print("Total Wall Clock for data_set_2 =", sum(df2_stat))
+
+def cpuEfficiency(data_set_1, data_set_2):
+    df1 = pd.DataFrame(data_set_1)
+    df2 = pd.DataFrame(data_set_2)
+
+    df1_stat = []
+    for cpu_e in df1["CPU Efficiency"].values:
+        df1_stat.append(cpu_e)
+    print("Average CPU Efficiency for data_set_1 =", sum(df1_stat) / len(df1_stat))
+    df2_stat = []
+    for cpu_e in df2["CPU Efficiency"].values:
+        df2_stat.append(cpu_e)
+    print("Average CPU Efficiency for data_set_2 =", sum(df2_stat) / len(df1_stat))
+
+
+
+data_set_actors = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/Jul-13-2022/SummaActors_jobStats_63221110.csv")
+data_set_original = pd.read_csv("/home/kklenk/projects/rpp-kshook/kklenk/SummaOriginalOuput/Jul-09-2022/SummaOriginal_jobStats_63155456.csv")
+
+wallClockTime(data_set_actors, data_set_original)
+print("")
+cpuEfficiency(data_set_actors, data_set_original)
\ No newline at end of file
diff --git a/utils/netcdf/OutputVerification/compareOutput.py b/utils/netcdf/OutputVerification/compareOutput.py
index 2bc563e48d1aa7871bab4dd4b34428f77b2d6a17..8f4d3adea1ec3c377890ebc37eb47f063e151846 100644
--- a/utils/netcdf/OutputVerification/compareOutput.py
+++ b/utils/netcdf/OutputVerification/compareOutput.py
@@ -3,7 +3,7 @@ from os.path import isfile, join
 from pathlib import Path
 import xarray as xr 
 
-numHRU = 25
+numHRU = 125
 
 time = 'time'
 scalarSWE = 'scalarSWE'
@@ -28,8 +28,8 @@ varList = [time, scalarSWE, scalarCanopyWat, scalarAquiferStorage, scalarTotalSo
     scalarTotalET, scalarTotalRunoff, scalarNetRadiation]
 
 filename = "out.txt"
-originalPath = Path('/home/kklenk/projects/rpp-kshook/kklenk/SummaOriginalOuput/May-13-2022/netcdf/SummaBE_G000001-000125_day.nc')
-actorsPath = Path('/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/May-26-2022/netcdf/SummaActorsGRU1-500_day.nc')
+originalPath = Path('/home/kklenk/projects/rpp-kshook/kklenk/SummaOriginalOuput/May-30-2022/netcdf/SummaBE_G001001-001125_day.nc')
+actorsPath = Path('/home/kklenk/projects/rpp-kshook/kklenk/SummaActorsOutput/Jun-18-2022/netcdf/SummaActorsGRU1001-1000_day.nc')
 
 originalDataset = xr.open_dataset(originalPath)
 actorsDataset = xr.open_dataset(actorsPath)
@@ -56,6 +56,7 @@ for i in range(0, numHRU):
       dataAct.append(data)
     print("Original", len(dataOrig))
     print("Actors", len(dataAct))
+    print("HRU = ", i)
     marginOfError = 0
     if var == time:
       for a in range(0, len(dataAct)):